

A2P Controls Model Single Way

- 1.1: Installation: standard rail channel (indoor)
- 1.2: Connection Diagram

1.3: Turn Switch:

OUT:4~20mA (Out put Current)

1	2	3	4
ON	ŒF	ŒF	ON

3=OF Excitation Voltage 4=ON to Load-cell 5V +E=5V

OUT:0~10V (Output Voltage)

3=ON Excitation Voltage 4=OF to Load-cell 12V +E=12V

Shift Excitation voltage according to the sensitivity of load cell, the bigger excitation voltage is, the more output is

1.4: Specification:

Power Supply: DC18~24V \pm 20%, <3W

Input Range: $0\sim30 \text{ mV}$

Output Signal: $0\sim10V/4\sim20mA$ (adjustable $\pm20\%$)

1.5: Max. Overload Current Protection:

Power Voltage > AC, DC30V $\pm 10\%$

Output Signal $> 30V \pm 10\%$

1.6: Commissioning:

ZERO Zero setting (Self-weight shall not exceed 30% of full capacity,

adjustZEROvariable resistor to a output of 0V or 4mA)

SPAN Capacity setting (Add standard load of full capacity to load-cell,

adjustSPAN variable resistor to a output of 10V or 20mA)

Remark: suggest to repeat the adjustment 3 times; added load shall be 20% over the full capacity

1.7: Parallel Deviation Rectification:

1/ In case two load-cells input to an amplifier, parallel deviation rectification is required, and output signal adjustment shall be done, adjust IN1 IN2 variable resistor to the same output when two load-cells have the same load.

(Skip the above when there is only one load-cell input.)

2/ Calibrate three times, to make sure the data is repeatable.

3/ If no full capacity load is available, since the load cell and amplifier have their own linearity, calibrate with part of capacity weight would be acceptable, but remember the lower rate